Book Title 1
Book Editors
10S Press, 2003

Exploiting Graphics Hardware
for Haptic Authoring

Minho Kim ®1, Sukitti Punak, Juan Cendah, Sergei KurenoV, and Jorg Petefs

aDept. CISE, University of Florida
b Dept. Surgery, University of Florida

Abstract. Real-time, plausible visual and haptic feedback of defdmabjects
without shape artifacts is important in surgical simulatEnvironments to avoid
distracting the user. We propose to leverage highly paisteam processing, avail-
able on the newest generation graphics cards, to increadewl of both visual
and haptic fidelity. We implemented this as part of the Ursitgrof Florida’s haptic
surgical authoring kit.

Keywords. virtual surgery training, haptic rendering, GPU shadehdsétision
surface, etc.

1. Introduction

Shape artifacts, such as the transition between facets iosafficiently refined model,
can distract both a user’s visual and haptic senses fromem gask. However, model-
ing a large scenario to a level of refinement that hides sygtesentation artifacts, re-
quires considerable computational resources. Fortupagelently, the graphics process-
ing units (GPU) of graphics cards have become more powearfiging highly parallel
stream processing with access giaphics shader programmingnoreover, novel data
structures have been developed to shift the work of fineljueiag high quality surface
representations, so-called subdivision surfaces, frarc#ntral processing unit (CPU)
to the GPU, freeing the CPU for higher-level and user-inasiks. While the state-of-the
art research addresses the need for real-time visual doimafthigh-quality represen-
tations, the higher frequency of haptic update has not,igtpihint, been satisfactorily
addressed in the literature.

We propose to leverage highly parallel stream processivailable on the newest
generation graphics cards, to increase the level of botlal/end haptic fidelity by tak-
ing advantage of (i) the locality of haptic probing (Figuneahd (ii) an improved com-
munication channel (bus) between the GPU and CPU.

As a proof of concept, we implemented the visual and haptgravement in the
University of Florida’s haptic surgical authoring kit. Bhhaptic authoring kit is a low
cost environmentthat allows the specialist surgeon tocadthptic and multimedia train-
ing exercises. A key issue in such a haptic simulation is terd@ne the minimal level

1Correspondence to: SurfLab, Dept. CISE, CSE Bldg E325, éJsity of Florida, Gainesville, FL 32611.
Tel.: +1 352 392 1255; Fax: +1 352 392 1220; E-mail: {mhkingj@cise.ufl.edu.

2 F. Author et al. / |OS Press Style Sample

Figure 1. Surface mesh refinement (depth 0,1,2,3) and rendering iof lsiop’s Subdivision.

of visual and haptic fidelity required to make the exerciseative. We had found earlier
that the consistent interplay between visual and haptidifaek is important to avoid
distracting the author form the task. However, modelling $shrfaces of organs, vessels
and tissues as visually and haptically smooth surfacedtseéauan equally undesirable
time-lag, especially when surfaces are allowed to deform.

Recently, many applications have been developed thatdgeeghe parallel process-
ing power of the modern GPUs. One of these applications isuthdime evaluation of
subdivision surfaces (1) using programmable graphicsvienes, calledsPU shaders
Since most of the human organs can be modeled compactly sisbdivision surfaces,
we adapt this approach using GPU shaders not only for vigralaring but also for
haptic rendering for our authoring environment. By tragkihe current position of the
haptic device, we can localize the evaluation thus redugndering overhead for high-
frequency rendering of deforming objects.

2. Background: Subdivision Algorithms, Spatial Data Structuresand Shaders

Subdivision algorithms create smooth surface approxomatby recursively refining the
connectivity and smoothing the geometry of a polyhedraltmpesh, known as theon-
trol mesh(see e.g. [1,2], 1). In all popular algorithms the positidramew mesh node
is obtained as the weighted average of old nodes of a smathesi, whose graph is
called stencil One such refinement pattern splits each triangle into fodria called
Loop subdivision (Figure 1).

Modern GPUs provide programmable parallel stream proegssithe form ofver-
tex shaderandfragment shader8]. Vertex shaders process attributes, such as positions,
normals, and texture coordinates, of a single vertex witlbmmnectivity. The down-
stream fragment shaders process the rasterized datattfileutes per pixel) and assign
the resulting pixels. Fragment shaders are the key compntatits for most GPU algo-
rithms (as well as ours) because of their computation poweahility to read and write
data by rendering to the framebuffer and copying to readalztere images.

Strategies and techniques for computation on GPUs arectadlén [4]. A number
of important algorithms have been modified to rebalance trilhvad between CPU and
GPU and take advantage of parallel execution streams irrgmagable graphics hard-
wares: particle systems [5], collision detection [6], akdl automata [7], global illumi-
nation [8] and other numerical computations [9,10]. The&thmic component on the
GPU, callecshades, rely essentially on accessing regularly laid out datzfigd by the
2D array, to minimize workflow branching and maximize paaidim. Irregular access
typically requires interaction with the CPU.

F. Author et al. / |IOS Press Style Sample 3
3. Real-timesubdivision surface reevaluation on the GPU

Most recently, researchers succeeded in mapping the lenegecess structure charac-
terizing general subdivision surface evaluation, to aesentation on the GPU [11].
A locality-preserving data access keeps all irregularisigictly inside overlapping, in-
dependently refinable pieces of the mesh, cditagment meshe@-igure 2), allowing
for parallel streams of work per fragment mesh and also pashmede. The fragment
meshes are encoded into one-dimensional array as a tegalieq patch texture fed
into GPU pipeline in a parallel fashion, and subdividedursivelyby fragment (pixel)
shaders in an off-screen framebuffer. Since all topolognectivity) information is
lost in the one-dimensional array, a smart, pre-compsiteicil lookup tablés also sent
to GPU as a texture. The GPU then re-evaluates a freely defgrsurface at inter-
active frame-rates (20-30 frames-per second) for modgraized control meshes (ca
100 nodes); see also Table 2. Thanks to recursive subdiyisican modekemi-smooth
creasedqfeatures that are sharp in the large scale, but roundeceantall scale) and
global boundaries.e. surface pieces.

There are several implementation challenges for this ambrdOne is to guarantee
water-tight boundaried.e. no pixel-dropout artifacts between fragment meshaether
is to avoid theredundant data round-tripf the final subdivision data that current gen-
eration graphics cards enforce: the evaluated values@medsn pixel formats in an off-
screen framebuffer, thgbuffer, that cannot directly be rendered. In currently available
standard GPU interfaces, it needs to be copied back to systanory and then returned
to GPU pipeline again. This ‘round-trip’ of the refined dataem it is the largest in size,
slows the rendering considerably. The feature that enaislés use the data in pixel for-
mats (stored in a texture of framebuffer) as vertex arrapiedrender-to-vertex-array
and there are several extensions for this purpose in Op&h@icluding thePBO/VBO
extensionand theiiberbuffer (supperbuffer) extensjoiiie upcoming OpenG® FBO
(framebuffer object) extensias expected to replace and improve on both which should
help our implementation.

3.1. GPU implementation of Loop subdivision

CPU GPU
1
AVAVAN -
N wAwAN --
YIS e
NS
/1] o4
N - e -
- NN &
AZAN AR,
y NG -~ Ay -
Nl i’
- -
(@) (b) c) (d)

Figure 2. Workflow of GPU Loop subdivision kernel: (a) input control sie(b) initial subdivision (c) frag-
ment meshes and (d) fragment meshes subdivided in the GPU.

4 F. Author et al. / |OS Press Style Sample

Most available mesh models consist of triangles and theralaubdivision scheme
for triangulated data sets. Following the general approd¢hl] we implemented Loop
subdivision on the GPU solving two challenges specific to_eabdivision. First, as
Figure 2 shows, after one refinement on the CPU, we obtaitex fragment meshes
composed of two layers of triangles around each of the inputrol vertices. However,
for each of the input facet, there is an additional centantyle that needs to separately
treated as dacet fragment meshts implementation, although the same over all facet
fragment meshes, is nontrivial. Secondly, guaranteeingmaht boundaries, especially
where two facet and two vertex fragment meshes meet, despiteling of intermediate
results, requires a smart symmetric refinement.

4. Surgical Haptic Authoring

To address the constant need for practicing surgeons talgaind conveniently refresh
their knowledge of surgical procedures that they are ndopming on a regular basis,
the University of Florida surgical authoring kit providesredia rich and ‘*hands-on’
channel for publishing procedures by a specialist surgsea Figure 3). A key point of
this approach is that the specialist surgeon rather thamagter programmer will author
the material to make the approach flexible and remove a ldualaection that slows
publication and easily leads to wrong emphasis. Curreh#kit's haptic component is
based on the affordable Phant8n®mni"™Haptic Device.

Figure 3. Screen shots from the University of Florida surgical autimkit.

5. Hapticrendering exploiting the GPU subdivision kernel

The OpenHaptidd'Toolkit is a popular SDK that enables developers to congvésal
widespread haptic device lineups from SensAble Technefdinc.. One of its merits is
that we can use the same Operf&eometry rendering modules for the haptic render-
ing. Since we already have tlii@ely subdividedsubdivision mesh calculated by GPU
shaders for visual display, we should obviously use thenmagahaptic rendering.

We dramatically improve the haptic rendering performabgeyounding each frag-
ment mesh to localize the haptic rendering of a deformaljlcbi5Since the geometry of
the fragment meshes change as they are subdivided, sucHibgumoxes must enclose
all the intermediate subdivided ones. Fortunately, in Leapdivision, positions of all
the vertices in the intermediate subdivided fragment meahe convex combinations of

F. Author et al. / |IOS Press Style Sample 5

Figure 4. Visual display of the localized fragment meshes used fotibapndering.

system video shaders | double buffer data
CPU GPU memory memory per buffer size round-trip
patch ing removal
1 Pentium 4 ATl Radeon 9700 Pro 1GB 128MB 2 no 2048x 1024 none
(2.40GHz) (Omega driver 2.5.97a) (AGP 4x)
2 Pentium 4 | nVidia GeForce 6800GT 1GB 256MB 1 yes 2048x 256 PBO/VBO
(3.00GHz) (driver 71.84) (AGP 8x)
3 Pentium M nVidia GeForce 6200 512MB 128MB 1 yes 2048x 256 PBO/VBO
(1.60GHz) (driver 70.87) (PCI Express 1&)
4 Pentium 4 ATI Radeon X800 1GB 256MB 1 no 2048x 256 PBO/VBO
(2.80GHz) (Omega driver 2.5.97a) (AGP 8x)

Table 1. Four hardware/shader configurations used for timings ife€tad and 3. All configurations use the
pbuffer mechanism as off-screen framebuffer.

the initial ones and therefore stay inside of the convexdiuthe initial fragment mesh.
We enclose the convex hull by a bounding sphere to increaserpance.

One of the bottlenecks when working with deformable objects bounding box
updates. However, the range of movement of the controloe=stof deformable organs
is limited, so that we can make the bounding spheres pagrsaditic, fixing its center
position and adjusting only the radius. The radius dependéie deformation and the
speed of the haptic devicié the device moves too quickly for the size of the bounding
sphere, we may not detect the intersection of the devicethélsurface of the object but
penetrate it to the interior, resulting in a well-knofalling-off artifact. By calibrating
the radius according to the speed of the haptic device, wawaid this artifact.

Once the fragment meshes close to the haptic device arerdeést, only their GPU-
subdivided meshes need to be handed to the haptic engingeMgvisually illustrates
the fragment meshes rendered for haptic feedback.

Results: Table 1 summarizes the four hardware/shader configuratimtesd for the vi-
sual feedback. Table 2 shows the resulting timings for gunsiual feedback and Table
3 the frames per second for combined visual and local hagtidering of real-time de-
forming of high-quality surfaces. The drop in performandgaweur current implementa-
tion can be as bad as 50% for small models on the older ATid@As just 10-20% on
the newer ATiX800. Considering that complete recomputatiiodepth 5 for each frame
is beyond the need perceived by users, the numbers indi@thigh-quality visual and
local haptic rendering is now within reach of commodity PGthwaigh-end commodity
graphics cards.

Acknowledgements This research was made possible in part by NSF Grants DMI-
0400214 and CCF-0430891.

6 F. Author et al. / |OS Press Style Sample

fps liver st omach mechpart venus

4 5 4 5 4 5 4 5
1 9.70 | 6.27| 853| 441| 7.62| 460 | 4.27| 1.88
2 22.83 | 15.63 | 19.42 | 11.43| 18.28 | 13.07 | 9.70 | 5.24
3 | 1832 9.15| 12.08| 4.85| 13.62| 6.81| 504 | 1.90

4 1391 | 842 | 1143 | 571 | 10.33| 6.04 | 542 | 2.40

Table 2. Frames per second (fps) for visual rendering of the four ganditions in Table 1; four data sets are
refined to depth 4, respectively 5 (ca. 300K triangled fover , 550K forst omach).

fps liver stomach

4 5 4 5
1 5.20| 3.62| 4.54]| 3.32
4 | 10.86| 6.40| 10.00| 5.08

Table 3. Frames per second (fps) for visual ren-
dering and haptic feedback on the two plat-

forms/configurations 1 and 4 supporting the Omni

b Figure 5.: Models| i ver andst omach
_and two surfaces relevant to our surgical author- shaded according to split into fragment
ing.

meshes.

References

[1] Tony DeRose, Michael Kass, and Tien Truong. Subdivisiorfaces in character animation.
In SIGGRAPH '98 Conference Proceedingages 85-94, 1998.

[2] Joe Warren and Henrik WeimeBubdivision Methods for Geometric Desigiorgan Kauf-
mann Publishers, 2002.

[3] Erik Lindholm, Mark J. Kligard, and Henry Moreton. A usprogrammable vertex engine.
In SIGGRAPH '01 Conference Proceedingages 149-158, 2001.

[4] Mark Harris, David Luebke, lan Buck, Naga Govindarajand Kruger, Aaron E. Lefohn,
Timothy J. Purcell, and Cliff Woolley. GPGPU: General-pasp computation on graphics
hardware.Course notes 32 of SIGGRAPH 20@004.

[5] A. Kolb, L. Latta, and C. Rezk-Salama. Hardware-baseduation and collision detection
for large particle systems. Burographics Symp Proc Gr Hardwar2004.

[6] Naga K. Govindaraju, Stephane Redon, Ming C. Lin, ande®mManocha. Cullide: interac-
tive collision detection between complex models in largarenments using graphics hard-
ware. InProceedings of the Conference on Graphics Hardwpeges 25-32. Eurographics
Association, 2003.

[7] Mark J. Harris, William V. Baxter, Thorsten Scheuermaand Anselmo Lastra. Simulation
of cloud dynamics on graphics hardware. Rroceedings of the Conference on Graphics
Hardware pages 92-101. Eurographics Association, 2003.

[8] Timothy J. Purcell, Craig Donner, Mike Cammarano, HeiWdann Jensen, and Pat Hanrahan.
Photon mapping on programmable graphics hardwar@rdoeedings of the Symposium on
Graphics Hardwarepages 41-50. Eurographics Association, 2003.

[9] Jens Kriiger and Ridiger Westermann. Linear algebraatmer for gpu implementation of
numerical algorithms. ISIGGRAPH '03 Conference Proceedingages 908-916, 2003.

[10] Jeff Bolz, lan Farmer, Eitan Grinspun, and Peter ScarédSparse matrix solvers on the
gpu: conjugate gradients and multigrid. S\GGRAPH '03 Conference Proceedingages
917-924, 2003.

[11] Le-Jeng Shiue, lan Jones, and J. Peters. A realtimegmlivision kernel. In Marcus Gross,

editor, Siggraph 2005, Computer Graphics Proceedingganual Conf Series, pages 1010—
1015. ACM Press, 2005.

