
Book Title
Book Editors
IOS Press, 2003

1

Exploiting Graphics Hardware
for Haptic Authoring

Minho Kim a,1, Sukitti Punaka, Juan Cendanb, Sergei Kurenovb, and Jörg Petersa

a Dept. CISE, University of Florida
b Dept. Surgery, University of Florida

Abstract. Real-time, plausible visual and haptic feedback of deformable objects
without shape artifacts is important in surgical simulation environments to avoid
distracting the user. We propose to leverage highly parallel stream processing, avail-
able on the newest generation graphics cards, to increase the level of both visual
and haptic fidelity. We implemented this as part of the University of Florida’s haptic
surgical authoring kit.

Keywords. virtual surgery training, haptic rendering, GPU shader, subdivision
surface, etc.

1. Introduction

Shape artifacts, such as the transition between facets of aninsufficiently refined model,
can distract both a user’s visual and haptic senses from a given task. However, model-
ing a large scenario to a level of refinement that hides such representation artifacts, re-
quires considerable computational resources. Fortunately, recently, the graphics process-
ing units (GPU) of graphics cards have become more powerful,offering highly parallel
stream processing with access viagraphics shader programming; moreover, novel data
structures have been developed to shift the work of finely evaluating high quality surface
representations, so-called subdivision surfaces, from the central processing unit (CPU)
to the GPU, freeing the CPU for higher-level and user-input tasks. While the state-of-the
art research addresses the need for real-time visual animation of high-quality represen-
tations, the higher frequency of haptic update has not, at this point, been satisfactorily
addressed in the literature.

We propose to leverage highly parallel stream processing, available on the newest
generation graphics cards, to increase the level of both visual and haptic fidelity by tak-
ing advantage of (i) the locality of haptic probing (Figure 4) and (ii) an improved com-
munication channel (bus) between the GPU and CPU.

As a proof of concept, we implemented the visual and haptic improvement in the
University of Florida’s haptic surgical authoring kit. This haptic authoring kit is a low
cost environment that allows the specialist surgeon to author haptic and multimedia train-
ing exercises. A key issue in such a haptic simulation is to determine the minimal level

1Correspondence to: SurfLab, Dept. CISE, CSE Bldg E325, University of Florida, Gainesville, FL 32611.
Tel.: +1 352 392 1255; Fax: +1 352 392 1220; E-mail: {mhkim,jorg}@cise.ufl.edu.



2 F. Author et al. / IOS Press Style Sample

Figure 1. Surface mesh refinement (depth 0,1,2,3) and rendering of using Loop’s Subdivision.

of visual and haptic fidelity required to make the exercise effective. We had found earlier
that the consistent interplay between visual and haptic feedback is important to avoid
distracting the author form the task. However, modelling the surfaces of organs, vessels
and tissues as visually and haptically smooth surfaces results in an equally undesirable
time-lag, especially when surfaces are allowed to deform.

Recently, many applications have been developed that leverage the parallel process-
ing power of the modern GPUs. One of these applications is therun-time evaluation of
subdivision surfaces (1) using programmable graphics hardwares, calledGPU shaders.
Since most of the human organs can be modeled compactly usingsubdivision surfaces,
we adapt this approach using GPU shaders not only for visual rendering but also for
haptic rendering for our authoring environment. By tracking the current position of the
haptic device, we can localize the evaluation thus reducingrendering overhead for high-
frequency rendering of deforming objects.

2. Background: Subdivision Algorithms, Spatial Data Structures and Shaders

Subdivision algorithms create smooth surface approximations by recursively refining the
connectivity and smoothing the geometry of a polyhedral input mesh, known as thecon-
trol mesh(see e.g. [1,2], 1). In all popular algorithms the position of a new mesh node
is obtained as the weighted average of old nodes of a small submesh, whose graph is
calledstencil. One such refinement pattern splits each triangle into four and is called
Loop subdivision (Figure 1).

Modern GPUs provide programmable parallel stream processing in the form ofver-
tex shadersandfragment shaders[3]. Vertex shaders process attributes, such as positions,
normals, and texture coordinates, of a single vertex without connectivity. The down-
stream fragment shaders process the rasterized data (i.e. attributes per pixel) and assign
the resulting pixels. Fragment shaders are the key computation units for most GPU algo-
rithms (as well as ours) because of their computation power and ability to read and write
data by rendering to the framebuffer and copying to readabletexture images.

Strategies and techniques for computation on GPUs are collected in [4]. A number
of important algorithms have been modified to rebalance the workload between CPU and
GPU and take advantage of parallel execution streams in programmable graphics hard-
wares: particle systems [5], collision detection [6], cellular automata [7], global illumi-
nation [8] and other numerical computations [9,10]. The algorithmic component on the
GPU, calledshaders, rely essentially on accessing regularly laid out data, typified by the
2D array, to minimize workflow branching and maximize parallelism. Irregular access
typically requires interaction with the CPU.



F. Author et al. / IOS Press Style Sample 3

3. Real-time subdivision surface reevaluation on the GPU

Most recently, researchers succeeded in mapping the irregular access structure charac-
terizing general subdivision surface evaluation, to a representation on the GPU [11].
A locality-preserving data access keeps all irregularities strictly inside overlapping, in-
dependently refinable pieces of the mesh, calledfragment meshes(Figure 2), allowing
for parallel streams of work per fragment mesh and also per mesh node. The fragment
meshes are encoded into one-dimensional array as a texture,calledpatch texture, fed
into GPU pipeline in a parallel fashion, and subdividedrecursivelyby fragment (pixel)
shaders in an off-screen framebuffer. Since all topology (connectivity) information is
lost in the one-dimensional array, a smart, pre-computedstencil lookup tableis also sent
to GPU as a texture. The GPU then re-evaluates a freely deforming surface at inter-
active frame-rates (20-30 frames-per second) for moderately-sized control meshes (ca
100 nodes); see also Table 2. Thanks to recursive subdivision, it can modelsemi-smooth
creases(features that are sharp in the large scale, but rounded at the small scale) and
global boundariesi.e. surface pieces.

There are several implementation challenges for this approach. One is to guarantee
water-tight boundaries, i.e. no pixel-dropout artifacts between fragment meshes.Another
is to avoid theredundant data round-tripof the final subdivision data that current gen-
eration graphics cards enforce: the evaluated values are stored in pixel formats in an off-
screen framebuffer, thepbuffer, that cannot directly be rendered. In currently available
standard GPU interfaces, it needs to be copied back to systemmemory and then returned
to GPU pipeline again. This ‘round-trip’ of the refined data when it is the largest in size,
slows the rendering considerably. The feature that enablesus to use the data in pixel for-
mats (stored in a texture of framebuffer) as vertex array is called render-to-vertex-array
and there are several extensions for this purpose in OpenGLR©, including thePBO/VBO
extensionand theüberbuffer (supperbuffer) extension; the upcoming OpenGLR© FBO
(framebuffer object) extensionis expected to replace and improve on both which should
help our implementation.

3.1. GPU implementation of Loop subdivision

CPU GPU

2
9

34
35
36
37
38
39
40 41

20
19
18
17
16

33

5
6
7
21
42 22

8
1
0

15
32

4

23 24
10

3

14
31

30
13

12
29

28
27

26
11

25

0
1

2
3 4

5
6
78

10
9

11
12 13

14
15

16
17

0 1
23

4
5 6 7

8
9

1011
12
13

14 15

16
17

0
1

2
3

4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

16

17

18

19

20 21

7

6

5

15

4

14

13

12

11

3

1098

1 2

0

4 3

11205

6 1 9 10

87
56

7 1 0 4

3298

10 11
9

310 8

720411

12 1 6

5(a) (b) (c) (d)

Figure 2. Workflow of GPU Loop subdivision kernel: (a) input control mesh (b) initial subdivision (c) frag-
ment meshes and (d) fragment meshes subdivided in the GPU.



4 F. Author et al. / IOS Press Style Sample

Most available mesh models consist of triangles and the natural subdivision scheme
for triangulated data sets. Following the general approachof [11] we implemented Loop
subdivision on the GPU solving two challenges specific to Loop subdivision. First, as
Figure 2 shows, after one refinement on the CPU, we obtainvertex fragment meshes
composed of two layers of triangles around each of the input control vertices. However,
for each of the input facet, there is an additional center triangle that needs to separately
treated as afacet fragment mesh. Its implementation, although the same over all facet
fragment meshes, is nontrivial. Secondly, guaranteeing water-tight boundaries, especially
where two facet and two vertex fragment meshes meet, despiterounding of intermediate
results, requires a smart symmetric refinement.

4. Surgical Haptic Authoring

To address the constant need for practicing surgeons to quickly and conveniently refresh
their knowledge of surgical procedures that they are not performing on a regular basis,
the University of Florida surgical authoring kit provides amedia rich and ‘hands-on’
channel for publishing procedures by a specialist surgeon (see Figure 3). A key point of
this approach is that the specialist surgeon rather than a computer programmer will author
the material to make the approach flexible and remove a level of indirection that slows
publication and easily leads to wrong emphasis. Currently the kit’s haptic component is
based on the affordable PhantomR© OmniTMHaptic Device.

Figure 3. Screen shots from the University of Florida surgical authoring kit.

5. Haptic rendering exploiting the GPU subdivision kernel

The OpenHapticsTMToolkit is a popular SDK that enables developers to control several
widespread haptic device lineups from SensAble Technologies, Inc.. One of its merits is
that we can use the same OpenGLR© geometry rendering modules for the haptic render-
ing. Since we already have thefinely subdividedsubdivision mesh calculated by GPU
shaders for visual display, we should obviously use them again for haptic rendering.

We dramatically improve the haptic rendering performance,by bounding each frag-
ment mesh to localize the haptic rendering of a deformable object. Since the geometry of
the fragment meshes change as they are subdivided, such bounding boxes must enclose
all the intermediate subdivided ones. Fortunately, in Loopsubdivision, positions of all
the vertices in the intermediate subdivided fragment meshes are convex combinations of



F. Author et al. / IOS Press Style Sample 5

Figure 4. Visual display of the localized fragment meshes used for haptic rendering.

system video shaders double buffer data

CPU GPU memory memory per buffer size round-trip

patch ing removal

1 Pentium 4 ATI Radeon 9700 Pro 1GB 128MB 2 no 2048×1024 none
(2.40GHz) (Omega driver 2.5.97a) (AGP 4×)

2 Pentium 4 nVidia GeForce 6800GT 1GB 256MB 1 yes 2048×256 PBO/VBO
(3.00GHz) (driver 71.84) (AGP 8×)

3 Pentium M nVidia GeForce 6200 512MB 128MB 1 yes 2048×256 PBO/VBO

(1.60GHz) (driver 70.87) (PCI Express 16×)

4 Pentium 4 ATI Radeon X800 1GB 256MB 1 no 2048×256 PBO/VBO

(2.80GHz) (Omega driver 2.5.97a) (AGP 8×)

Table 1. Four hardware/shader configurations used for timings in Tables 2 and 3. All configurations use the
pbuffer mechanism as off-screen framebuffer.

the initial ones and therefore stay inside of the convex hullof the initial fragment mesh.
We enclose the convex hull by a bounding sphere to increase performance.

One of the bottlenecks when working with deformable objectsare bounding box
updates. However, the range of movement of the control vertices of deformable organs
is limited, so that we can make the bounding spheres partially static, fixing its center
position and adjusting only the radius. The radius depends on the deformation and the
speed of the haptic device: if the device moves too quickly for the size of the bounding
sphere, we may not detect the intersection of the device withthe surface of the object but
penetrate it to the interior, resulting in a well-knownfalling-off artifact. By calibrating
the radius according to the speed of the haptic device, we canavoid this artifact.

Once the fragment meshes close to the haptic device are determined, only their GPU-
subdivided meshes need to be handed to the haptic engine. Figure 4 visually illustrates
the fragment meshes rendered for haptic feedback.
Results: Table 1 summarizes the four hardware/shader configurationstested for the vi-
sual feedback. Table 2 shows the resulting timings for purely visual feedback and Table
3 the frames per second for combined visual and local haptic rendering of real-time de-
forming of high-quality surfaces. The drop in performance with our current implementa-
tion can be as bad as 50% for small models on the older ATi9700,but is just 10-20% on
the newer ATiX800. Considering that complete recomputation to depth 5 for each frame
is beyond the need perceived by users, the numbers indicate that high-quality visual and
local haptic rendering is now within reach of commodity PCs with high-end commodity
graphics cards.
Acknowledgements This research was made possible in part by NSF Grants DMI-
0400214 and CCF-0430891.



6 F. Author et al. / IOS Press Style Sample

fps liver stomach mechpart venus

4 5 4 5 4 5 4 5

1 9.70 6.27 8.53 4.41 7.62 4.60 4.27 1.88

2 22.83 15.63 19.42 11.43 18.28 13.07 9.70 5.24

3 18.32 9.15 12.08 4.85 13.62 6.81 5.04 1.90

4 13.91 8.42 11.43 5.71 10.33 6.04 5.42 2.40
Table 2. Frames per second (fps) for visual rendering of the four configurations in Table 1; four data sets are
refined to depth 4, respectively 5 (ca. 300K triangles forliver, 550K forstomach).

fps liver stomach
4 5 4 5

1 5.20 3.62 4.54 3.32
4 10.86 6.40 10.00 5.08

Table 3. Frames per second (fps) for visual ren-
dering and haptic feedback on the two plat-
forms/configurations 1 and 4 supporting the Omni
and two surfaces relevant to our surgical author-
ing.

Figure 5.: Models liver and stomach
shaded according to split into fragment
meshes.

References

[1] Tony DeRose, Michael Kass, and Tien Truong. Subdivisionsurfaces in character animation.
In SIGGRAPH ’98 Conference Proceedings, pages 85–94, 1998.

[2] Joe Warren and Henrik Weimer.Subdivision Methods for Geometric Design. Morgan Kauf-
mann Publishers, 2002.

[3] Erik Lindholm, Mark J. Kligard, and Henry Moreton. A user-programmable vertex engine.
In SIGGRAPH ’01 Conference Proceedings, pages 149–158, 2001.

[4] Mark Harris, David Luebke, Ian Buck, Naga Govindaraju, Jens Krüger, Aaron E. Lefohn,
Timothy J. Purcell, and Cliff Woolley. GPGPU: General-purpose computation on graphics
hardware.Course notes 32 of SIGGRAPH 2004, 2004.

[5] A. Kolb, L. Latta, and C. Rezk-Salama. Hardware-based simulation and collision detection
for large particle systems. InEurographics Symp Proc Gr Hardware, 2004.

[6] Naga K. Govindaraju, Stephane Redon, Ming C. Lin, and Dinesh Manocha. Cullide: interac-
tive collision detection between complex models in large environments using graphics hard-
ware. InProceedings of the Conference on Graphics Hardware, pages 25–32. Eurographics
Association, 2003.

[7] Mark J. Harris, William V. Baxter, Thorsten Scheuermann, and Anselmo Lastra. Simulation
of cloud dynamics on graphics hardware. InProceedings of the Conference on Graphics
Hardware, pages 92–101. Eurographics Association, 2003.

[8] Timothy J. Purcell, Craig Donner, Mike Cammarano, Henrik Wann Jensen, and Pat Hanrahan.
Photon mapping on programmable graphics hardware. InProceedings of the Symposium on
Graphics Hardware, pages 41–50. Eurographics Association, 2003.

[9] Jens Krüger and Rüdiger Westermann. Linear algebra operators for gpu implementation of
numerical algorithms. InSIGGRAPH ’03 Conference Proceedings, pages 908–916, 2003.

[10] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröder. Sparse matrix solvers on the
gpu: conjugate gradients and multigrid. InSIGGRAPH ’03 Conference Proceedings, pages
917–924, 2003.

[11] Le-Jeng Shiue, Ian Jones, and J. Peters. A realtime gpu subdivision kernel. In Marcus Gross,
editor,Siggraph 2005, Computer Graphics Proceedings, Annual Conf Series, pages 1010–
1015. ACM Press, 2005.


